Regulatory Requirements for Use of Transgenic Plants in the Greenhouse

Frank A. Cantone, Ph.D., CBSP Biological Safety Officer Environmental Health & Safety

Agenda

- Introduction
- Guidance and Oversight
- Biosafety Levels
- Containment

Introduction

- NIH Guidelines specifies practices for:
 - rDNA molecules
 - Organisms and viruses that contain rDNA
- rDNA molecules are:

of those above

 Molecules constructed outside cells by joining DNA segments to DNA molecules that replicate in a living cell

– Molecules that result from replication

Introduction

• Transgenic or genetically modified organisms (GMO)

– Plants

- Plant-associated organisms
- Greenhouses
- Guidance is not abundant

Guidance and Oversight

- NIH Guidelines
 - Risk assessment
 - Containment
 - Work practicesFacilities
- Although advisory, compliance=funding!!
- Sections III-E-2 and D-5 "Experiments Involving Whole Plants"
 - Genetically-modified whole plants
 - Genetically-modified microorganisms

Guidance and Oversight

- Appendix P- "Physical and Biological Containment for Recombinant DNA Research Involving Plants"
- Specifies physical and biological containment, and practices suitable for greenhouse
- · Biosafety levels
- Plants include:
 - Vascular plants including crops, ornamentals, and forest species
 - Mosses, liverworts, macroscopic algae

Guidance and Oversight

- Plant-associated microorganisms
 - Fungi, bacteria, viruses
 - Benign, beneficial (mycorrhizae, *Rhizobium*), or pests
- Plant-associated animals or arthropods
 - Invertebrate vectors
 - Pests
 - Nematodes

Guidance and Oversight

- Other Federal agencies
 - USDA/APHIS
 - Protect US agriculture
 - Any introduction of GMOs
 - EPA
 - Plants producing pesticidal substances (e.g., Bt)
 Novel microbes for commercial use (e.g., pollutant degrading bacteria)
 - FDA
 - Engineered for human and animal
 - consumptionHuman and veterinary drugs

Guidance and Oversight

- Institutional Biosafety Committee (formerly the rDNA Committee)
 - Membership with NIH
 - At least five members including two non-affiliated members

CORNELL

- CU Faculty and Staff with various expertise from different fields
- Currently, six members with plant biology or plant pathology experience

Guidance and Oversight

• What does the IBC do?

- Review rDNA research and use of biological agents and toxins
- Evaluate personnel, facilities, and procedures
- Recommend policies to guide principal investigators and EH&S in carrying out the University's Biosafety Program
- Maintain documentation and communicate with NIH

Guidance and Oversight

- Principal investigator
 - Ultimate responsibility
 - Submit Memorandum of Understanding and Agreement (MUA)
 - Determine appropriate containment and develop protocols (e.g., greenhouse practices manual)
 - Training and oversight of personnel
 - Communicate with the lab and greenhouse staff!!!!!

Guidance and Oversight

- Greenhouse staff
 - Become familiar with the project
 - What's transgenic and what's not
 - Know what's in the greenhouse practices manual
 - Management and disposal practices
 - Awareness and reporting

Plant Biosafety Levels

- Combination of practices, physical, and biological containment conditions
- Increasing levels of environmental protection and containment
- Avoid unintentional transmission or release
- No threat to humans or animals
- Minimize ecosystem effects outside of facility
- BL1-P through BL4-P

Plant Biosafety Levels

• Factors to consider

- Recipient organism
 - Transmission, detrimental impact, outcrossing
 - Nature of introduced DNA
 - Pathogens, exotic agentsCompatible species in local environment
 - Wild or weedy species
 - Procedures and practices
 Movement of materials, containment

Plant Biosafety Levels

- BL1-P
 - Low level of containment
 - Low environmental risk (i.e., inability to survive and spread)
 - Plant-associated microorganisms not easily disseminated- minimal impact
 - e.g., not noxious weeds, cannot outcross, plant transformation with *Agrobacterium*

Plant Biosafety Levels

- BL2-P
 - Higher level of containment
 - Recognized potential for rapid and widespread dissemination
 - Some environmental impact
 - Capable of interbreeding with weeds or related species

Plant Biosafety Levels

- BL2-P
 - Complete genome of non-exotic infectious agent
 - Plant-associated microbes- manageable environmental harm
 - Exotic microbes- little potential for impact on ecosystems
 - Plant-associated insects- no serious ecosystem impact

Plant Biosafety Levels

• BL3-P

- Significant impact on environment
- Exotic infectious agents detrimental to
 - environment – Vertebrate toxins

Containment

- · Protect the environment, not the researcher
- Risk assessment
 - Organism
 - Geographic/ecologic setting
 - Mechanical barriers
 - Selected practices
 - Consequences and likelihood of release

Risk Assessment Risk Mitigation

Containment

- Basic Principles
- Avoid transmission or release
- Prevent introduction and establishment of organism in new ecosystem
- Minimize impact on organisms and ecosystems outside of facility
- Avoid inadvertent spread of serious pathogen
- Achieved through biological methods, physical barriers, and management practices

Biological Containment

- Works in conjunction with Biosafety Levels
- Highly effective
- Can be used to lower physical containment or **Biosafety Levels**
- Reproductive, spatial, or temporal

Biological Containment

- Plants- minimize dissemination of pollen or seed
 - Harvest material prior to reproductive stage
 - Cover reproductive structures
 - Use male sterile lines
 - Cross-fertile plants not growing or flowering Time, distance of experimental plants
 - Localize engineered genes in non-reproductive parts

Biological Containment

- Microorganisms- minimize dissemination
 - Genetic attenuation
 - Eliminate vectors
 - Limit production of aerosols during
 - inoculations - Obligate association with the plant host

 - Distance between infected and susceptible hosts

Physical Containment

BL1-P

- Access at discretion of greenhouse director
- Read and follow BL1-P practices and procedures; appropriate for organisms
- Record of experiments currently in progress
- BL2-P Access limited to
- individuals directly involved with experiments
- Read and follow BL2-P practices and procedures; appropriate for organisms
- Record of experiments currently in progress, and organisms brought into or out of facility

Physical Containment

BL1-P

- Inactivate organisms before disposal
- Control undesired species
 Contain arthropods and other motile organisms in appropriate cages, and minimize escape from greenhouse

• BL2-P

- Inactivate organisms before disposal
- Control undesired species
- Contain arthropods and other motile organisms in appropriate cages, and minimize escape from greenhouse

25

Physical Containment

• BL1-P

- Experiments requiring lower containment may be conducted concurrently; all under BL1-P practices
- Floor may be composed of gravel or other porous material
- Screens are recommended
- No personal protective equipment required

- BL2-P
 - Experiments requiring lower containment may be conducted concurrently; all under BL2-P practices
 - <u>Concrete</u> floor recommended; gravel under benches acceptable
 - Screens are required
 - No personal protective equipment required

Physical Containment

• BL2-P

- Principal investigator shall report inadvertent release or spill
- Decontamination of run-off water not necessarily required, but
- Periodically treat gravel to eliminate trapped organisms
- Transfer transgenic material in closed, secondary containment

Physical Containment

• BL2-P

- Appropriate signage
 Name of responsible individual, plants in use, special requirements, GMO vs. non-GMO
- If risk to human health- universal biohazard sign
- SO I
- Indicate presence of organisms that can adversely impact ecosystems

Physical Containment BL2-P Autoclave is available Construct fans to minimize ingress of arthropods

Physical Containment

• BL2-P

- Prepare a greenhouse practices manual
 - Standard practices and facilities
 - Special practices
 - Contingency plans for release
 - Contact information
 - Personnel notification
 - Decontamination

Research with Restricted Pathogens

- Agricultural Bioterrorism Protection Act of 2002: Possession, Use and Transfer of Biological Agents and Toxins; 7 CFR 331
- Select Agents- threats to plant health and plant products
- Registration of entities, e.g., universities, industries
- ▲ DOJ/FBI approval for SA handlers
- ▲ Biosecurity, safety, emergency response, etc.
- ▲ Recordkeeping for inventories, access, etc.
- ▲ Must contact EH&S!!!
- http://www.aphis.usda.gov/ppq/permits/agr_bioterrorism/

Research with Restricted Pathogens

- Liberobacter africanus
- Liberobacter asiaticus
- Peronosclerospora philippinesis
- Phakospsora pachyrhizi
- Plum pox potyvirus
- Ralstonia solanacearum, race 3, biovar 2
- Sclerophthora rayssiae var. zeae
- Synchytrium endobioticum
- Xanthomonas oryzae pv. oryzicola
- Xylella fastidiosa (citrus variegated chlorosis strain)

Summary

- Transgenic plants and associated organisms are commonly used
- Environmental protection is the goal
- Guidelines and risk assessment direct appropriate Biosafety Levels
- Biological and physical containment

Resources

- NIH Guidelines, Appendix P. "Physical and Biological Containment for Recombinant DNA Research Involving Plants" http://www4.od.nih.gov/oba/rac/guidelines_02/Appendix_P.htm
- A Practical Guide to Containment- Greenhouse Research with Transgenic Plants and Microbes <u>http://www.isb.vt.edu/cfdocs/greenhouse_manual.cfm</u>
- Guidelines for Handling Transgenic Plants and Associated Organisms

http://www2.fpm.wisc.edu/biosafety/Base/PlantContainment.htm